

Jobbergate

[image: _images/jobbergate.svg]
 [https://pypi.python.org/pypi/jobbergate/][image: _images/jobbergate1.svg]
 [https://travis-ci.com/HeMan/jobbergate][image: Documentation Status]
 [https://jobbergate.readthedocs.io/en/stable/?badge=stable]Jobbergate is a questionnaire application that populates Jinja2 templates with given answers.

In its simplest form you only need a views.py that defines mainflow and a
template file (called templates/job_template.j2) which gets populated with your answers.
To support advanced workflows you could define multiple levels of questions, change
to other templates, run functions before and after subworkflows, have follow up questions to boolean questions and so on.

To install, just do:

pip install jobbergate

Configure jobbergate.yaml to point to your directory where you have all
applications. Set JOBBERGATE_PATH environment to point to where your
jobbergate.yaml resides.

Jobbergate is a Flask application but could be run both as a web application
and as a cli application.

To run as web application, just do:

flask run

To run as cli application, you can find out which applications it has in its
configuration directory with:

flask --help

If you have an application called simple you run it with:

flask simple outputfile.sh

This will populate the simple application template with the answers you give in
the following interactive session, and create outputfile.sh.

If you want the output file to be run in bash automatically, you may explicitly give the command in your
implemented application. For example, if you define a function in your application’s controller.py such as:

@workflow.logic
def post_generic(data):
 retval = {"cmd_command":f"cat {data['filename']}"}
 return retval

the application will run:

cat outputfile.sh

which shows the content of the output file.
This feature can be suppressed by using the ‘–no-cmd’ flag:

flask simple outputfile.sh --no-cmd

Workflow

Simple workflow

A simple workflow is implemented with the function mainflow defined in views.py and a template defined in templates/job_template.j2:

+-- views.py
+-+ templates/
 + job_template.j2

views.py:

from jobbergate import appform

def mainflow(data):
 return [appform.Text("jobname", "What is the jobname?", default="simulation")]

job_template.j2:

#!/bin/bash
#SBATCH -j {{ data.jobname }}
sleep 30

Workflow with implicit workflows

A workflow with implicit workflows is built by defining mainflow and functions decorated with appform.workflow:

+-- views.py
+-+ templates/
 + job_template.j2

views.py:

from jobbergate import appform

def mainflow(data):
 return [appform.Text("jobname", "What is the jobname?", default="simulation")]

@appform.workflow
def debug(data):
 return [appform.Confirm("debug", "Add debug info?")]

@appform.workflow
def gpu(data):
 return [appform.Integer("gpus", "Number of gpus?", default=1, maxval=10)]

job_template.j2:

#!/bin/bash
#SBATCH -j {{ data.jobname }}

{% if data.gpus %}
NUMBER_OF_GPUS={{ data.gpus }}
{% else %}
NUMBER_OF_GPUS=0
{% endif %}

{% if data.debug %}
/application/debug_prepare
{% endif %}

/application/run_application -gpus $NUMBER_OF_GPUS

Contents:

	API
	Controller

	Templates

	Views

	internal

	Configuration
	Flask configuration

	Jobbergate configuration

	Application specific

Indices and tables

	Index

	Module Index

	Search Page

API

Contents:

	Controller

	Templates

	Views
	Simple view (with no workflow selection)

	View with decorator workflow

	View with nextworkflow question

Controller

Controller is for running code before and after workflows run.

All pre_/post_-functions takes a dict as an argument that is populated with all
cumulated info from earlier pre_/post_, all previous questions and configuration file.

Should return a dict or None.

from datetime import datetime
from jobbergate import workflow

@workflow.logic
def pre_(data):
 # adds current datetime to data
 return {'datetime': str(datetime.now())}

Templates

Views

Simple view (with no workflow selection)

Views is built functions returning lists of questions. mainflow is the only
expected function, others are all optional.

Functions that jobbergate calls gets all know data as inparameter as data.

Simplest view.py:

from jobbergate import appform

def mainflow(data):
 return [appform.Text('jobbname', 'What is the jobbname', default='MyJob')]

View with decorator workflow

Views can have a workflow “split” that gives the user an option to select
a diferent path.

‘view.py’ with workflow defined with decorator. This give the user the question
to select between debug and precision workflow. debug gives the boolean question
“Add extra debug flags” and precsision gives an integer question regarding
“Steps per mm”.

from jobbergate import appform

def mainflow(data):
 return [appform.Text('jobbname', 'What is the jobbname', default='MyJob')]

@appform.workflow
def debug(data):
 return [appform.Confirm('debugoptions', 'Add extra debug flags')]

@appform.workflow
def precision(data):
 return [appform.Integer('precision', 'Steps per mm', minval=1, maxval=100)]

View with nextworkflow question

A view can have workflow selected by a question with the variable
nextworkflow. This should be a List to give the user a list to select from.
This should not have any function decorated with @appform.workflow.

from jobbergate import appform

def mainflow(data):
 return [appform.Text('jobbname', 'What is the jobbname'),
 appform.List('nextworkflow', ['precision', 'debug'])]

def debug(data):
 return [appform.Confirm('debugoptions', 'Add extra debug flags')]

def precision(data):
 return [appform.Integer('precision', 'Steps per mm', minval=1, maxval=100)]

internal

Configuration

Configuration could be done in config.py as objects and selected via
environment variable APP_SETTINGS. This could be done to have differente
setting for developement, test, production etc. This file is part of the
installation and should seldom be changed.

Configuration could also be done in jobbergate.yaml, which overrides
configuration done in config.py. It only overrides the same variables, so
if you have different variables in the files they are all going to be set.

The environment variable JOBBERGATE_PATH points to the directory where
jobbergate.yaml resides, and could therefor point to a project or user
configuration.

Flask configuration

To start flask in debug mode, set FLASK_DEBUG to true.

LDAP

Jobbergate uses flask-ldap3-login to be able to authenticate via LDAP and
Active Directory. Configuration options is described at flask-ldap3-login [https://flask-ldap3-login.readthedocs.io/en/latest/configuration.html].

The configuration could reside in both config.py and in
jobbergate.yaml.

A configuration for Active Directory could look like this:

class ProductionConfig(BaseConfig):
 """Production configuration."""

 BCRYPT_LOG_ROUNDS = 13
 SQLALCHEMY_DATABASE_URI = os.environ.get(
 "DATABASE_URL", "sqlite:///{0}".format(os.path.join(basedir, "prod.db"))
)
 WTF_CSRF_ENABLED = True
 LDAP_SEARCH_FOR_GROUPS = False
 LDAP_USE_SSL = True
 LDAP_PORT = 636
 LDAP_HOST = "ad.server.examlpe.com"
 LDAP_USER_DN = "OU=Users"
 LDAP_BASE_DN = "dc=ad,dc=server,dc=example,dc=com"
 LDAP_USER_LOGIN_ATTR = "cn"
 LDAP_USER_RDN_ATTR = "cn"

Jobbergate configuration

jobbergate.yaml has one section called apps: that has path:
pointing to the directory containing all the applications.

jobbergate.yaml is also passed in the data structure flowing through the
application as data["jobbergateconfig"].

Instead of using jobbergate.yaml, JOBBERGATE_PATH can also be defined as
a module name in an implemented application, for example, in its __init__.py file,
declare such as os.environ["JOBBERGATE_PATH"] = "myapp". After module myapp having
been installed, Jobbergate can read in myapp as JOBBERGATE_PATH.

Application specific

You could have an application specific configuration file called
config.yaml that is added to the data structure flowing through the
application.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Jobbergate

 		
 API

 		
 Controller

 		
 Templates

 		
 Views

 		
 Simple view (with no workflow selection)

 		
 View with decorator workflow

 		
 View with nextworkflow question

 		
 internal

 		
 Configuration

 		
 Flask configuration

 		
 LDAP

 		
 Jobbergate configuration

 		
 Application specific

_static/file.png

_static/minus.png

